Inactivation of sodium channels underlies reversible neuropathy during critical illness in rats.

نویسندگان

  • Kevin R Novak
  • Paul Nardelli
  • Tim C Cope
  • Gregory Filatov
  • Jonathan D Glass
  • Jaffar Khan
  • Mark M Rich
چکیده

Neuropathy and myopathy can cause weakness during critical illness. To determine whether reduced excitability of peripheral nerves, rather than degeneration, is the mechanism underlying acute neuropathy in critically ill patients, we prospectively followed patients during the acute phase of critical illness and early recovery and assessed nerve conduction. During the period of early recovery from critical illness, patients recovered from neuropathy within days. This rapidly reversible neuropathy has not to our knowledge been previously described in critically ill patients and may be a novel type of neuropathy. In vivo intracellular recordings from dorsal root axons in septic rats revealed reduced action potential amplitude, demonstrating that reduced excitability of nerve was the mechanism underlying neuropathy. When action potentials were triggered by hyperpolarizing pulses, their amplitudes largely recovered, indicating that inactivation of sodium channels was an important contributor to reduced excitability. There was no depolarization of axon resting potential in septic rats, which ruled out a contribution of resting potential to the increased inactivation of sodium channels. Our data suggest that a hyperpolarized shift in the voltage dependence of sodium channel inactivation causes increased sodium inactivation and reduced excitability. Acquired sodium channelopathy may be the mechanism underlying acute neuropathy in critically ill patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of reversible inactivation of the central amygdaloid nucleus on cardiovascular responses in rats with renal hypertension

The brain rennin-angiotensin system (RAS) has an important role in the regulation of cardiovascular function. The aim of the present study was to determine the effect of reversible inactivation of the central amygdaloid nucleus (Ace) in normotensive rats and rats with renal hypertension (2K-1C). Two groups of normotensive rats were selected for this study. In one group, hypertension was induced...

متن کامل

The effect of reversible inactivation of the central amygdaloid nucleus on cardiovascular responses in rats with renal hypertension

The brain rennin-angiotensin system (RAS) has an important role in the regulation of cardiovascular function. The aim of the present study was to determine the effect of reversible inactivation of the central amygdaloid nucleus (Ace) in normotensive rats and rats with renal hypertension (2K-1C). Two groups of normotensive rats were selected for this study. In one group, hypertension was induced...

متن کامل

Effect of reversible inactivation of locus ceruleus on naloxone-induced withdrawal syndrome in paragigantocellular neurons in morphine-dependent rats

In this study, the effect of reversible inactivation of locus ceruleus (LC) on naloxone- induced withdrawal syndrome in paragigantocellular (PGi) neurons in morphine- dependent rats was investigated. For inactivation of LC, 1 µl of lidocaine (2%) was used and for induction of withdrawal syndrome, naloxone hydrochloride (2 mg/kg) was injected systemically. The results showed that in dependent gr...

متن کامل

Reversible Inactivation and Excitation of Nucleus Raphe Magnus Can Modulate Tail Blood Flow of Male Wistar Rats in Response to Hypothermia

Background: The nucleus raphe magnus (NRM) is involved in thermoregulatory processing. There is a correlation between changes in the firing rates of the cells in the NRM and the application of the peripheral thermal stimulus. Introduction: we examined the effect of reversible inactivation and excitation of NRM on mechanisms involved in tail blood flow (TBF) regulation in hypothermia. Methods: H...

متن کامل

Contribution of the Nucleus Cuneiformis to the Antinociceptive Effects of Systemic Morphine on Inflammatory Pain in Rats

Introduction: The role of midbrain reticular formation, which includes the nucleus cuneiformis (NCF), as a crucial antinociceptive region in descending pain modulation has long been investigated. In this study, we tried to highlight the role of NCF in morphine-induced antinociception in formalin-induced pain model in rats. Methods: A total of 201 male Wistar rats weighing 260-310 g were used in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 119 5  شماره 

صفحات  -

تاریخ انتشار 2009